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Beams of microscopic particles penetrating scattering background matter play an impor-
tant role in several applications. The parameter choices made here are motivated by the
problem of electron-beam cancer therapy planning. Mathematically, a steady particle
beam penetrating matter, or a configuration of several such beams, is modeled by a bound-
ary value problem for a Boltzmann equation. Grid-based discretization of such a problem
leads to a system of algebraic equations. This system is typically very large because of the
large number of independent variables in the Boltzmann equation—six if no dimension-
reducing assumptions other than time independence are made. If grid-based methods
are to be practical for these problems, it is therefore necessary to develop very fast solvers
for the discretized problems. For beams of mono-energetic particles interacting with a pas-
sive background, but not with each other, in two space dimensions, the first author pro-
posed such a solver, based on angular domain decomposition, some time ago. Here, we
propose and test an angular multigrid algorithm for the same model problem. Our numer-
ical experiments show rapid, grid-independent convergence. For high-resolution calcula-
tions, our method is substantially more efficient than the angular domain decomposition
method. In addition, unlike angular domain decomposition, the angular multigrid method
works well even when the angular diffusion coefficient is fairly large.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Charged-particle transport plays an important role in many fields; examples include electron microscopy [20], cancer
therapy using electrons [12,13], protons, or heavy ions [22], and various other applications of ion beams [21,26]. The work
presented here aims to contribute to the development of accurate and efficient simulation methods for charged-particle
transport. The parameter choices in this paper are motivated by the electron-beam cancer therapy dose-calculation problem
[12,13]. Procedures for electron-beam cancer treatment plan optimization require the solution of many electron transport
problems; the efficiency of the algorithms used for these transport problems is therefore important.

Mathematically, a particle beam, or a configuration of several such beams, is modeled by a Boltzmann equation. This
equation may be linear or nonlinear, depending on whether or not the beam particles interact with each other. Here, we will
assume linearity, a common and accurate approximation in electron-beam cancer therapy planning.

Thus, our investigation belongs to the vast subject of numerical methods for the linear Boltzmann equation. One impor-
tant source of difficulty in the computational solution of the linear Boltzmann equation is the sheer size of the problems:
There are, in general, seven independent variables (position and velocity in three dimensions, and time), and still six when
considering time-independent boundary value problems, as we do here. Of course, this is the number of independent
. All rights reserved.
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variables in any kinetic problem (unless the geometry is special), not just in charged-particle transport. However, there are
additional difficulties associated specifically with charged-particle transport: The mean free path tends to be small, scatter-
ing tends to be very forward-peaked (i.e., particles are typically deflected only very slightly by a single interaction with the
background), and particles typically lose very little energy in a single interaction. These properties of charged-particle trans-
port cause difficulties with the accuracy of discretizations and with the efficiency of solution algorithms for the discretized
problems [16, Section 3.2], which have lead many in the Medical Physics community to believe that the most efficient way of
modeling electron beams may be Monte Carlo simulation. However, based on a rough theoretical complexity estimate pre-
sented in [4], we believe that deterministic, grid-based methods could eventually prove to be a very attractive alternative to
Monte Carlo simulation, provided that all available tools of numerical computing are brought to bear to develop highly accu-
rate discretizations as well as optimally efficient solution algorithms for the discretized problems. Some algorithm and code
development efforts in this direction are in fact underway; see, for instance, [2,9].

In this paper, we focus on the problem of designing highly efficient solvers for a grid-based discretization of the model
equation of [3] (reviewed in Section 2). This equation describes physics in ‘‘Flatland” [1], i.e., in a fictitious two-dimensional
world. It is arguably the simplest possible caricature of charged-particle transport in more than one space dimensions. We
propose and test an angular multigrid method for this problem. The idea of angular multigrid methods for particle transport
with forward-peaked scattering was first proposed, for a one-dimensional problem, by Morel and Manteuffel [17]; exten-
sions of the idea to higher dimensions have had limited success so far [18]. However, for our two-dimensional model prob-
lem, the convergence of the angular multigrid method turns out to be rapid, and the speed of convergence appears to be
independent of the grid size. It is not entirely clear at this point why our approach, for the simpler problem discussed here,
does not encounter the obstacles described in [18]; see Section 10 for some thoughts on this point.

2. The model problem

To make this paper as self-contained as possible, we will review the model equation of [3] and its properties here, closely
following but abbreviating the exposition of [3]. We will mix physical and mathematical terminology, writing, for instance,
about ‘‘particles” that move ‘‘in a domain X # R2”.

2.1. Model equation

We consider mono-energetic particle transport in two space dimensions. It must be emphasized that this is not the same
as (and, indeed, is simpler than) the projection of three-dimensional particle transport into a plane. We consider the motion
of particles in a domain, X # R2, assuming that all particles move at the same constant speed, c > 0. Each particle experiences
collisions at random times, causing random direction changes. The inter-collision distances, k > 0, are exponentially distrib-
uted and independent of each other; their expectation, �k > 0, is called the mean free path. The deflection angles, g, (see Fig. 1)
are independent of each other and of the inter-collision distances.

The probability density of g is p : ð�p;pÞ ! Rþ. We assume that p is an even function, i.e., that particles have no prefer-
ence for scattering to the right over scattering to the left or vice versa. The graph of p qualitatively looks like that shown in
Fig. 2, where the forward-peakedness of the scattering is reflected by the peak in the graph of p near g ¼ 0. For realistic mod-
els of the scattering of electrons, however, this peak would be much more pronounced than in Fig. 2.

The phase space density, f ¼ f ðx; y; h; tÞ, is the number of particles per unit ðx; y; hÞ-volume, where ðx; yÞ 2 X denotes the
particle position, ðcos h; sin hÞ is the particle direction, and t P 0 is time. The function f is 2p-periodic in h. The time evolution
of f is governed by the linear Boltzmann equation, the mathematical statement of the law of conservation of particles,
ft þ c cos h f x þ c sin h f y ¼ cQf : ð1Þ
Here, c denotes the particle speed (assumed constant in this model problem), and the collision operator Q is defined by
Qf ¼ p � f � f
�k

;

where � denotes convolution with respect to h:
ðp � f ÞðhÞ ¼
Z p

�p
pðgÞf ðh� gÞdg:
λ

η

Fig. 1. An example of a particle path.



Fig. 2. A qualitative plot of the probability density p.
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As mentioned earlier, in some applications, including electron-beam radiation therapy, the primary interest is in steady-
state problems. We therefore drop the term ft in Eq. (1). We then also divide both sides by c. The result is
cos h f x þ sin h f y ¼
p � f � f

�k
: ð2Þ
This is our model equation.
We define the Fourier coefficients,
p̂n ¼
Z p

�p
expð�ingÞpðgÞdg ð3Þ
and
f̂ n ¼
1

2p

Z p

�p
expð�insÞf ðsÞds ð4Þ
for all integers n (where, for now, we write f ¼ f ðhÞ and suppress the dependence on ðx; yÞ). Note that we include the factor of
1=ð2pÞ in (4) but not in (3); this is intentional and will simplify the notation a bit. With these definitions, we have
f ðhÞ ¼
X1

n¼�1
f̂ n expðinhÞ;
and it is straightforward to verify that
Qf ðhÞ ¼
X1

n¼�1

p̂n � 1
�k

f̂ n expðinhÞ: ð5Þ
This equation serves as the basis of our discretization of Q; see Section 3. In analyzing this discretization, the following obser-
vations about p̂n will be useful. Since p is assumed to be an even function,
p̂n ¼
Z p

�p
cosðngÞpðgÞdg:
This implies that
p̂0 ¼ 1; �1 < p̂n < 1 for all n – 0; and p̂�n ¼ p̂n for all n: ð6Þ
When collisions are strongly forward-peaked (that is, when pðgÞ is small everywhere except near g ¼ 0), the following
calculation is plausible:
p � f � f
�k

ðhÞ ¼ 1
�k

Z p

�p
pðgÞf ðh� gÞdg� f ðhÞ

� �
� 1

�k

Z p

�p
pðgÞ f ðhÞ � fhðhÞgþ fhhðhÞ

g2

2

� �
dg� f ðhÞ

� �
¼ DfhhðhÞ;
where the angular diffusion coefficient, D, is defined by
D ¼ 1
2�k

Z p

�p
g2pðgÞdg: ð7Þ
This calculation was made rigorous in [3] as follows. Assume that
�k! 0 and
Z p

�p
g2pðgÞdg! 0;
that is, collisions become increasingly frequent and increasingly forward-peaked. Assume further that there is a balance be-
tween these two limits in the following sense:
R p

�p g2pðgÞdg
2�k

! D > 0:



Fig. 3. jgj (dashes) vs.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� cos gÞ þ �2

p
(solid curve) with � ¼ 0:1.
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We then ask whether
Qf * D
@2f

@2h
; ð8Þ
where ‘‘ *” denotes weak convergence in L2 (that is, convergence of Fourier coefficients). Proposition 1 of [3] states that (8)
holds if and only if
R p

�p g4pðgÞdgR p
�p g2pðgÞdg

! 0: ð9Þ
We now turn to the question of how to construct a probability density, p, that mimics realistic three-dimensional scatter-
ing kernels as far as possible in Flatland. It is natural to consider p � 1=jgjq for some q > 0. To obtain a 2p-periodic function

that is non-singular at g ¼ 0, we replace jgj by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� cos gÞ þ �2

p
for some small parameter � > 0; see Fig. 3. Thus we define
pðgÞ ¼ C

ð2ð1� cos gÞ þ �2Þq=2 ; ð10Þ
with the constant C > 0 chosen so that
R p
�p pðgÞdg ¼ 1.

Proposition 2 of [3] shows that, for this choice of pðgÞ,
lim
�!0

Z p

�p
g2pðgÞdg ¼ 0 if and only if q P 1;
and
lim
�!0

R p
�p g4pðgÞdgR p
�p g2pðgÞdg

¼ 0 if and only if q P 3:
Thus, for q P 3, Eq. (2) can be approximated by the Fokker–Planck equation,
cos h f x þ sin h f y ¼ Dfhh; ð11Þ
when �k and
R p
�p g2pðgÞdg are small, with D defined as in (7).

In the borderline case, q ¼ 3, the convergence in (9) is logarithmic [3]. In three space dimensions, the screened Rutherford
scattering cross section [25] has the precisely analogous properties [5, Appendix]. We therefore say that (10) with q ¼ 3 de-
fines screened Rutherford scattering in Flatland.

Another interesting case is q ¼ 2. In this case, the approximation of Q by D@2=@h2 is not valid. In fact, it is not hard to show

that in the limit as �! 0, one obtains a pseudo-differential operator proportional to �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�@2=@h2

q
. In this and some other re-

gards, (10) with q ¼ 2 resembles the Henyey–Greenstein scattering cross section [11]; see [19,3]. We therefore say that (10)
with q ¼ 2 defines Henyey–Greenstein scattering in Flatland.

In the examples of this paper, we always specify the parameters q; �k, and D, not the less intuitive parameter �. Note that �
can be calculated, using Eqs. (7) and (10), from q, �k and D.

2.2. Boundary conditions

We supplement Eq. (2) or its Fokker–Planck approximation (11) with inflow boundary conditions. That is, f ðx; y; hÞ is pre-
scribed if ðx; yÞ lies on the boundary, @X, of X and the direction vector, ðcos h; sin hÞ, points from ðx; yÞ into X. The details of
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how this is implemented in a discrete approximation of the continuous boundary value problem turn out to be crucial for the
efficiency of our multigrid algorithm; see Section 4.1.

2.3. Choice of parameters

The choice of the parameters D and �k was discussed in detail in [3, Section 5]. It was shown there that, approximately, the
amount by which a beam broadens as it penetrates a strip of width L in the ðx; yÞ-plane equals ðDLÞ1=2L. For the beam to re-
main recognizable as a beam, ðDLÞ1=2L should be much smaller than L, i.e.,

ffiffiffiffiffiffi
DL
p

� 1. It was further argued in [3, Section 5]
that the values of L=�k that are most relevant in electron-beam radiation therapy are on the order of (a few multiples of)
10,000.

For simplicity, we consider X ¼ ð0; LÞ � ð0; LÞ throughout this paper, and assume that x and y are non-dimensionalized so
that L becomes 1:
X ¼ ð0;1Þ � ð0;1Þ: ð12Þ
The condition
ffiffiffiffiffiffi
DL
p

� 1 then becomes
D� 1:
The condition L=�k � 10;000 becomes �k � 1=10;000. Many of our numerical results are for D ¼ 0:1 and �k ¼ 1=20;000, but in
Section 9, we will also test much larger values of D, and a broad range of values of �k.

2.4. The spatial diffusion limit

Very large values of D may be of lesser interest in electron-beam radiation therapy. However, we will examine the behav-
ior of our multigrid algorithm for larger values of D in Section 9.1.4. To elucidate the nature of the problem for large D, we
will briefly consider the limit D!1 here, for simplicity focusing exclusively on the Fokker–Planck Eq. (11). In this limit, our
model transport process turns into diffusion in the ðx; yÞ-plane. This is entirely analogous to the standard asymptotic expan-
sion of the neutron transport equation in the limit of vanishing mean free path [10,14]; in fact, D!1 implies �k! 0 by Eq.
(7). We present here the formal derivation of the spatial (steady-state) diffusion equation from Eq. (11) in the limit D!1.

Suppose that
D ¼ D0

d
;

with D0 > 0 fixed, d > 0; d! 0. Assume an asymptotic expansion of the form
f ¼ f ð0Þ þ df ð1Þ þ d2f ð2Þ þ � � � ; ð13Þ
where f ð0Þ; f ð1Þ; f ð2Þ; . . ., are functions of ðx; y; hÞ, but not of d, and are periodic in h with period 2p. We insert (13) into (11):
cos hðf ð0Þ þ df ð1Þ þ d2f ð2Þ þ � � � Þx þ sin hðf ð0Þ þ df ð1Þ þ d2f ð2Þ þ � � � Þy ¼
D0

d
ðf ð0Þ þ df ð1Þ þ d2f ð2Þ þ � � � Þhh: ð14Þ
Isolating terms containing the factor d�1, we find
f ð0Þhh ¼ 0:
Thus f ð0Þ is a linear function of h. Since f ð0Þ is also 2p-periodic in h, we conclude
f ð0Þ ¼ f ð0Þðx; yÞ: ð15Þ
Isolating terms containing the factor d0 in (14), we now find
cos h f ð0Þx þ sin h f ð0Þy ¼ D0f ð1Þhh : ð16Þ
Integrating twice, we obtain
D0f ð1Þ ¼ � cos h f ð0Þx � sin h f ð0Þy þ aðx; yÞ þ bðx; yÞh:
Since f ð1Þ is periodic in h, we must have bðx; yÞ 	 0:
D0f ð1Þ ¼ � cos h f ð0Þx � sin h f ð0Þy þ aðx; yÞ: ð17Þ
Isolating terms containing the factor d1 in Eq. (14), we obtain
cos h f ð1Þx þ sin h f ð1Þy ¼ D0f ð2Þhh : ð18Þ
Inserting Eq. (17) into (18) and integrating over h, we find Laplace’s equation for f ð0Þ:
f ð0Þxx þ f ð0Þyy ¼ 0: ð19Þ
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Thus for large D, a solution of (11) will be nearly isotropic (independent of h) in the interior of the domain X, and satisfy
Laplace’s equation. The solution will not be isotropic on the boundary, however; there will be a boundary layer in which a
rapid transition from anisotropy on the boundary to isotropy in the interior will occur.

3. Discretization in angle

Following [3], we discretize the collision operator, Q, based on Eq. (5):
Qf ðhÞ ¼ p � f � f
�k

¼
X1

n¼�1

p̂n � 1
�k

f̂ n expðinhÞ ¼
X1

n¼�1

p̂n � 1
�k

1
2p

Z p

�p
expð�insÞf ðsÞds expðinhÞ: ð20Þ
We choose a positive integer, nh, divisible by 2 for simplicity, and define
Dh ¼ 2p
nh
:

The discretization of Q is an operator, QDh, that maps the space of 2p-periodic functions defined on the grid
Cnh
¼ fhl ¼ lDh : l integerg
into itself. A 2p-periodic function, f, on Cnh
can naturally be identified with the vector
f ¼ ðf ðhlÞÞl¼�nh=2þ1;�nh=2þ1;...;nh=2:
Therefore, QDh can also be thought of as an nh � nh-matrix. Using this point of view, QDh is defined by the following discrete
analog of Eq. (20):
ðQDhfÞl ¼
Xnh=2

n¼�nh=2þ1

p̂n � 1
�k

1
nh

Xnh=2

m¼�nh=2þ1

expð�inhmÞf ðhmÞ expðinhlÞ: ð21Þ
An equivalent formula is obtained by replacing n with �n in the summands on the right-hand side of Eq. (21):
ðQDhfÞl ¼
Xnh=2

n¼�nh=2þ1

p̂�n � 1
�k

1
nh

Xnh=2

m¼�nh=2þ1

expðinhmÞf ðhmÞ expð�inhlÞ: ð22Þ
Averaging Eqs. (21) and (22) and using p̂�n ¼ p̂n (see (6)), we find
ðQDhfÞl ¼
1
nh

Xnh=2

n¼�nh=2þ1

Xnh=2

m¼�nh=2þ1

p̂n � 1
�k

cosðnðhl � hmÞÞf ðhmÞ: ð23Þ
This form of the equation shows that QDh is real and symmetric. The eigenvalues of QDh are ðp̂n � 1Þ=�k;�nh=2þ 1 6 n 6 nh=2,
with associated eigenvectors
ðexpðinhlÞÞ�nh=2þ16l6nh=2
[3, Section 10]. Since p̂0 ¼ 1 and jp̂nj < 1 for all n – 0 (see (6)), we conclude that QDh is negative semi-definite with a one-
dimensional kernel spanned by vector ½1;1; . . . ;1
T 2 Rnh ; this is Proposition 4 of [3].

In the Fokker–Planck limit,
p̂n � 1
�k
! �Dn2;
this is Eq. (14) of [3]. In this limit, the right-hand side of Eq. (21) therefore becomes
Xnh=2

n¼�nh=2þ1

ð�Dn2Þ 1
nh

Xnh=2

m¼�nh=2þ1

expð�inhmÞf ðhmÞ
 !

expðinhlÞ: ð24Þ
Note that �n2 is the eigenvalue of @2=@h2 associated with the eigenfunction expðinhÞ. Eq. (24) represents a spectrally accurate
discretization of Dfhh. We will also report on numerical experiments using the standard second-order three-point discretiza-
tion of the second derivative with respect to h on the right-hand side of the Fokker–Planck Eq. (11).

4. Discretization in space

In this paper, it is not our aim to address the question how to best discretize our model equation in space. In what follows,
we propose a relaxation technique and an associated multigrid algorithm that we believe will be efficient for many reason-
able discretizations. The central assumptions of this method are that the discretization of the scattering term (either in the
full scattering operator or its Fokker–Planck approximation) preserves the elliptic character of this term, and that the spatial
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terms are, in some sense, discretized upstream, so that the effects of advection may be effectively computed using a down-
stream Gauss–Seidel-like iteration. Our focus in this paper is on the optimally efficient solution of the resulting discretized
equations. We use what are arguably the simplest possible discretizations for the spatial terms, first- and second-order up-
stream differencing based on a uniform spatial grid.

4.1. The discrete inflow and outflow boundaries

Our spatial grid points are
ðjDs; kDsÞ; 0 6 j; k 6 ns;
where ns > 0 is an integer and Ds ¼ 1=ns. As discussed in Section 3, the discrete values of h are
hl ¼ lDh; �nh=2þ 1 6 l 6 nh=2;
where nh > 0 is an even integer and Dh ¼ 2p=nh.
It is important for the performance of the multigrid algorithm of Section 8 to be careful about what we mean, in the dis-

crete case, by inflow directions for spatial grid points on the boundary of X. Let ðjDs; kDsÞ be a spatial boundary point, i.e.,
j ¼ 0; j ¼ ns; k ¼ 0, or k ¼ ns. Let �nh=2þ 1 6 l 6 nh=2. At first sight, it would seem natural to call ðcos hl; sin hlÞ an inflow
direction if it points strictly into X from the boundary point ðjDs; kDsÞ, and an outflow direction otherwise. This definition,
however, is not quite compatible with standard definitions of grid-transfer operators, in a sense explained in Section 8.1.
We have found that, as a result, multigrid convergence can deteriorate significantly as the angular grid is refined.

There are two different approaches to overcoming this problem. One is to modify standard grid-transfer and coarse-grid
operators. Proper multigrid convergence can, in fact, be restored this way. However, we have adopted the simpler and more
straightforward alternative of modifying the definitions of inflow and outflow directions, as described in the following par-
agraph. The modified definitions are compatible with standard grid-transfer operators, as explained in Section 8.1, and lead
to grid-independent convergence of standard multigrid cycles, as demonstrated in Section 9.

At a point ðjDs; kDsÞ 2 @X, a direction vector ðcos hl; sin hlÞ is called an outflow direction if the negative of ðcos hl; sin hlÞ
points strictly into the domain. We also say then that ðjDs; kDs; lDhÞ belongs to the discrete outflow boundary, denoted by
@Xout . (For simplicity, we do not indicate the dependence of @Xout on Ds and Dh in this notation.) We call ðcos hl; sin hlÞ an
inflow direction at the spatial boundary point ðjDs; kDsÞ if it is not an outflow direction, and we say then that ðjDs; kDs; lDhÞ
belongs to the discrete inflow boundary, denoted by @Xin. Fig. 4 illustrates the definitions of @Xout and @Xin. (Note that in
the corner points of @X, many directions that would intuitively be considered outflow directions are in fact inflow directions
by our definition.) The set
X
� ¼ fðjDs; kDs; lDhÞjðjDs; kDsÞ R @Xg
is called the interior of the grid. Thus, the spatial grid is partitioned into its interior and the inflow and outflow boundaries:
fðjDs; kDs; lDhÞj0 6 j; k 6 ns; �nh=2þ 1 6 l 6 nh=2g ¼ X� [ @Xout [ @Xin:
Approximations
fj;k;l � f ðjDs; kDs; lDhÞ
are prescribed if ðjDs; kDs; lDhÞ 2 @Xin, and computed from the finite-difference equations if ðjDs; kDs; lDhÞ 2 @X� [ @Xout .
Fig. 4. ‘‘Outflow”, @Xout , (dashes) vs. ‘‘inflow”, @Xin , (bold) directions on the boundary of X.



Table 1
EðnÞ=approximate mean square error (see (31)), and RðnÞ ¼ EðnÞ=Eð2nÞ .

First order Second order

Test problem 1 Test problem 2 Test problem 1 Test problem 2

EðnÞ RðnÞ EðnÞ RðnÞ EðnÞ RðnÞ EðnÞ RðnÞ

n ¼ 32 0.0062 1.7 0.010 1.6 0.0039 2.7 0.0056 2.6
n ¼ 64 0.0037 1.7 0.0065 1.7 0.0014 3.4 0.0021 3.4
n ¼ 128 0.0021 1.8 0.0040 1.8 0.00042 3.8 0.00062 3.9
n ¼ 256 0.0011 – 0.0023 – 0.00011 – 0.00016 –
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As indicated in Fig. 4, we deviate from the naive definitions of inflow and outflow directions only in directions tangential
to @X, and in a range of directions in the corner points of @X; thus our modifications affect only a set of measure zero in the
continuous inflow boundary, and should not prevent convergence to the solution of the continuous problem as Ds! 0 and
Dh! 0.

4.2. First-order upstream differencing

The first-order upstream differencing method is based on the one-sided difference formula,
u0ðsÞ ¼ uðsÞ �uðs� DsÞ
Ds

þ OðDsÞ;
for the derivative, u0ðsÞ, of a smooth function, u, of the real variable s. The difference quotients are taken in the upstream
direction in all cases, that is, in the direction opposite to the direction vector ðcos h; sin hÞ. As an example, suppose that
cos hl > 0 and sin hl < 0; the first-order upstream discretization of
cos h f x þ sin h f y ð25Þ
at ðx; y; hÞ ¼ ðjDs; kDs; lDhÞ is then
cos hl
fj;k;l � fj�1;k;l

Ds
þ sin hl

fj;kþ1;l � fj;k;l

Ds
:

Note that this is well-defined, i.e., j� 1 P 0 and kþ 1 6 ns, if ðjDs; kDs; lDhÞ R @Xin. The first-order upstream differencing
approximation for (25) is, in general, well-defined for ðjDs; kDs; lDhÞ R @Xin. At points ðjDs; kDs; lDhÞ 2 @Xin, the transport equa-
tion is not discretized, but instead fj;k;l is prescribed.

4.3. Second-order upstream differencing

The second-order upstream differencing method is based on the one-sided difference formula
u0ðsÞ ¼ 1:5uðsÞ � 2uðs� DsÞ þ 0:5uðs� 2DsÞ
Ds

þ OðDs2Þ:
Again the difference quotients are taken in the upstream directions. As in the example above, suppose again that cos hl > 0
and sin hl < 0. The second-order upstream discretization of (25) is then
cos hl
1:5f j;k � 2f j�1;k þ 0:5f j�2;k

Ds
þ sin hl

�0:5f j;kþ2 þ 2f j;kþ1 � 1:5f j;k

Ds
: ð26Þ
Note that this is not well-defined in points with j ¼ 1 or k ¼ ns � 1. When the second-order discretization of fx or fy is not
well-defined, we use the first-order discretization instead. For instance, when j ¼ 1 but k < ns � 1, then (26) is replaced by
cos hl
fj;k � fj�1;k

Ds
þ sin hl

�0:5f j;kþ2 þ 2f j;kþ1 � 1:5f j;k

Ds
:

Since first-order discretizations are used only in grid points immediately adjacent to the boundary, we expect the overall
order of convergence of our discretization scheme to be two; the numerical experiments of Table 1 in Section 6 support this.

5. Test problems

In what follows, we will consider three test problems. The first two are chosen to model somewhat realistic broad beams
of electrons in two distinct configurations. The third test problem is chosen specifically to test the numerical performance of
the proposed algorithms.
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5.1. Test problem 1: A broad beam aligned with the grid

We first consider a broad beam in which the mean direction of incoming particles is aligned with the grid. The inflow
boundary condition is of the form
f ðx; y; hÞ ¼
gðxÞhðh mod 2pÞ if 0 6 x 6 1; y ¼ 0;0 6 h mod 2p 6 p;
0 otherwise;

�
ð27Þ
where
h mod 2p ¼ hþ 2pu; u ¼ integer chosen so that � p < h mod 2p 6 p:
The function g ¼ gðxÞ is a smoothed step function; its graph is depicted in Fig. 5. The formulas defining g are
gðxÞ ¼

0 if 0 6 x 6 0:2;
ð1þ tanhð2 tanð5ðx� 0:3ÞpÞÞÞ=2 if 0:2 6 x 6 0:4;
1 if 0:4 6 x 6 0:6;
ð1� tanhð2 tanð5ðx� 0:7ÞpÞÞÞ=2 if 0:6 6 x 6 0:8;
0 if 0:8 6 x 6 1:

8>>>>>><
>>>>>>:

ð28Þ
(This is an infinitely often differentiable function.) We further define
hðhÞ ¼ e�ðh�p=2Þ2=0:1ffiffiffiffiffiffiffiffiffiffiffi
0:1p
p : ð29Þ
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Fig. 5. Spatial profile of the beams in test problems 1 and 2 at the inflow boundary.
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Fig. 6. Angular profile of the beams in test problems 1 and 2 (solid and dashed) at the inflow boundary.
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Fig. 7. Macroscopic density for two broad beams, one (A) aligned with the grid, and the other (B) not.
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Thus the mean angle at which particles enter is p=2. The solid curve in Fig. 6 is the graph of (29). Fig. 7(A) shows the mac-
roscopic density,
qj;k ¼
Xnh=2

l¼�nh=2þ1

fj;k;l Dh;
for this example, using screened Rutherford scattering with D ¼ 0:1 and �k ¼ 1=20;000, displayed on a 32 � 32-grid, but com-
puted using second-order upstream differencing on a 512� 512� 512-grid.

5.2. Test problem 2: A broad beam not aligned with the grid

Our second test problem differs from the first only in the definition of the function h. In comparison with the first test
problem, we shift the mean incoming particle direction by 0.35 radians, or approximately 20�, so that
hðhÞ ¼ e�ðh�p=2�0:35Þ2=0:1ffiffiffiffiffiffiffiffiffiffiffi
0:1p
p : ð30Þ
The dashed line in Fig. 6 is the graph of h. The resulting macroscopic density is shown in Fig. 7(B). We expect (and will dem-
onstrate numerically) that our spatial discretizations are somewhat less accurate for test problem 2 than for test problem 1.

5.3. Test problem 3: Zero inflow boundary values

To measure asymptotic convergence factors of the proposed iterative methods, it is useful to be able to carry out many
multigrid iterations without encountering round-off effects. We will therefore also use a test problem in which—as in test
problems 1 and 2—there are no interior sources, but in which there is also no inflow through the boundary, so that the solu-
tion is zero:
fj;k;l ¼ 0 for all j; k; and l:
We then start our iterations (see Sections 7–9) with a nonzero initial guess (see Eq. (37)), in order to more accurately mea-
sure asymptotic performance of the resulting iterations.

6. Accuracy of the discretizations

The accuracy of the finite-difference discretizations is not the principal topic of this paper; we are mainly concerned with
the efficient solution of the discretized problems here. Nevertheless, in this subsection, we report on some numerical exper-
iments concerning the accuracy of our discretizations. The main purpose of these experiments is to verify that first- and sec-
ond-order convergence are in fact seen with the first- and second-order upstream differencing schemes.

The experiments of this subsection are for test problems 1 and 2 with screened Rutherford scattering, using D ¼ 0:1 and
�k ¼ 1=20;000, and using first and second-order upstream differencing. Let
f ðnÞj;k;l; 0 6 j; k 6 n; �n=2þ 1 6 l 6 n=2;
denote the approximations computed on the grid with ns ¼ nh ¼ n. For n ¼ 2r � 32; r P 0 integer, we define EðnÞ to be the
mean square discrepancy between f ðnÞ and f ð2nÞ, both restricted to the 32� 32� 32-grid:
EðnÞ ¼ 1
332 � 32

X32

j¼0

X32

k¼0

X16

l¼�15

f ðnÞ2r j;2r k;2r l � f ð2nÞ
2rþ1 j;2rþ1k;2rþ1 l

� �2
: ð31Þ
We compute f ðnÞ for n ¼ 32;64;128;256, and 512, EðnÞ for n ¼ 32;64;128, and 256, and RðnÞ ¼ EðnÞ=Eð2nÞ for n ¼ 32;64, and 128.
Table 1 shows the results. As expected, discretization accuracy is better for test problem 1 than for test problem 2, but the
difference is not dramatic. As n increases, the ratio RðnÞ appears to approach 2.0 for the first-order method, and 4.0 for the
second-order method for both test problems, as it should.

7. An angular relaxation scheme

The discretization of (2) that we wish to solve can briefly be represented as follows:
ðcos hl@
Ds
x þ sin hl@

Ds
y Þf ¼ QDhf ; ð32Þ
where f ¼ ðfj;k;lÞ06j;k6ns ;�nh=2þ16l6nh=2, the symbols @Ds
x and @Ds

y denote upstream discretizations of the partial derivatives with

respect to x and y (see Sections 4.2 and 4.3), and QDh denotes the spectral discretization of the collision operator Q (see Sec-
tion 3) or the three-point discretization of the Fokker–Planck operator D@2=@h2. Eq. (32) is supplemented with inflow bound-
ary conditions (see Section 4.1).
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In Section 8, we propose a multigrid correction cycle [6] to solve this problem, using coarsening in h only, not in x and y.
The auxiliary equations solved on coarser grids are of the form
ðcos Hl@
Ds
x þ sin Hl@

Ds
y Þf ¼ Q 2kDhf þ R; ð33Þ
where k P 1 is an integer, and R denotes residuals transferred from the next finer grid. Eq. (33) is supplemented with zero
inflow boundary conditions. We write
DH ¼ 2kDh
to denote the mesh width of the angular grid, and
nH ¼
nh

2k
to denote the number of angles that belong to the grid. We will always assume that nH is even. The grid points are
Hl ¼ lDH; �nH=2þ 1 6 l 6 nH=2:
We now describe a relaxation scheme for (33), supplemented with discrete inflow boundary conditions. In the multigrid cy-
cle, this relaxation scheme is used on the finest grid (where R is zero, and the inflow boundary values are typically nonzero)
as well as on the coarser grids (where R is typically nonzero, and the inflow boundary values are zero). We use the following
‘‘red-black” ordering of the angular grid points in the relaxation scheme:
l ¼ �nH=2þ 1;�nH=2þ 3; . . . ;nH=2� 1; �nH=2þ 2;�nH=2þ 4; . . . ;nH=2: ð34Þ
In several contexts, red-black (or black-red) ordering has been found to lead to significantly more rapid multigrid conver-
gence than lexicographic ordering [23].

For each fixed l, we sweep over the spatial grid points in the downstream direction. At the end of such a sweep, for the
fixed value of l, all residuals at grid points ðjDs; kDs; lDHÞ are zero. Of course, they typically become nonzero again later, as a
result of sweeping over grid points with different values of l. The relaxation scheme is analogous to the waveform relaxation
method for the heat equation discussed by Vandewalle and Horton [24]. Here, instead of a single ‘‘time-like” variable, we
consider planes of ðx; yÞ values for each Hl and perform a red-black relaxation sweep over these planes, combined with
coarse-grid correction over the H-direction in our computational mesh.

7.1. Measuring convergence speed

In the following sections, we report on tests of the speed with which the proposed iterative methods converge. In each
iteration, we determine the factor by which the sum of the squares of residuals is reduced. We denote this factor by qm for the
mth iteration. We also use the notation
qM;N ¼
YN

m¼M

qm

 !1=ðN�Mþ1Þ

ð35Þ
for the average convergence factor in cycles M through N; here N P M P 1.
The value of qM;N depends, of course, on the initial guess. For test problems 1 and 2, we always use the initial guess
fj;k;l ¼
given boundary values if ðjDs; kDs; lDhÞ is an inflow boundary point;
0 otherwise:

�
ð36Þ
For test problem 3, we use the initial guess
fj;k;l ¼
1 if 1 6 j; k 6 n� 1;
0 otherwise:

�
ð37Þ
7.2. Performance of relaxation

Tables 2 and 3 show the averaged per-cycle convergence factors, q1;24, for the Flatland analog of screened Rutherford scat-
tering (q ¼ 3 in Eq. (10)) with D ¼ 0:1 and �k ¼ 1=20;000, using first- and second-order upstream differencing, respectively.
For fixed ns, the value of q1;24 increases significantly with nh. For fixed nh, it appears that q1;24 can be bounded independently
of ns.

The results of Tables 2 and 3 are not surprising. The relaxation algorithm chosen here is based on successive sweeps
across the xy-planes of the grid. Since such a sweep (temporarily) removes residuals in the plane regardless of ns, it is to
be expected that the convergence factors show little dependence on ns. The slight decrease in q1;24 as ns increases probably



Table 2
Average convergence factor per iteration in first 24 relaxation iterations for test problem 2, discretized using first-order upstream differencing.

nh ¼ 32 nh ¼ 64 nh ¼ 128 nh ¼ 256 nh ¼ 512

ns ¼ 32 0.315 0.667 0.938 0.965 0.982
ns ¼ 64 0.307 0.657 0.932 0.959 0.974
ns ¼ 128 0.302 0.647 0.925 0.952 0.967
ns ¼ 256 0.297 0.638 0.915 0.944 0.959
ns ¼ 512 0.292 0.629 0.905 0.935 0.951

Table 3
Average convergence factor per iteration in first 24 relaxation iterations for test problem 2, discretized using second-order upstream differencing.

nh ¼ 32 nh ¼ 64 nh ¼ 128 nh ¼ 256 nh ¼ 512

ns ¼ 32 0.304 0.662 0.953 0.977 0.988
ns ¼ 64 0.299 0.652 0.943 0.971 0.984
ns ¼ 128 0.294 0.642 0.930 0.963 0.977
ns ¼ 256 0.290 0.633 0.917 0.951 0.969
ns ¼ 512 0.286 0.624 0.903 0.938 0.958

Table 4
Average convergence factor per iteration in first 12 relaxation iterations for test problem 2, with the Henyey–Greenstein scattering operator. Discretization uses
second-order upstream differencing in space.

nh ¼ 32 nh ¼ 64 nh ¼ 128 nh ¼ 256 nh ¼ 512

ns ¼ 32 0.057 0.057 0.115 0.254 0.467
ns ¼ 64 0.059 0.059 0.111 0.245 0.448
ns ¼ 128 0.061 0.061 0.107 0.238 0.433
ns ¼ 256 0.062 0.062 0.104 0.231 0.420
ns ¼ 512 0.064 0.065 0.101 0.224 0.407

C. Börgers, S. MacLachlan / Journal of Computational Physics 229 (2010) 2914–2931 2925
merely indicates that the spectral radius is less accurately approximated by q1;24 for larger values of ns than for smaller
values.1

Table 4 presents the averaged per-cycle convergence factors, q1;12, for relaxation alone for Henyey–Greenstein scattering
(q ¼ 2 in Eq. (10)). Here, in contrast to the results in Table 3, we see that for small- and moderate-sized grids, relaxation per-
forms very well. In fact, for the smallest grids, where nh ¼ 32, relaxation performs even better than indicated, as the itera-
tions reduce the error to the level of machine precision in fewer than 12 iterations. Although q1;12 increases with nh, the
convergence factors are so small that we expect it to be difficult to make improvements using a multigrid method for real-
istic problem sizes. (Since our discretization is spectrally accurate in nh, very large values of nh are probably irrelevant.)
Experiments and further discussion regarding this point are given in Section 9.3.

8. The angular multigrid method

Since the convergence of the relaxation method proposed in Section 7 deteriorates as nh increases, it is natural to attempt
to accelerate the method using a coarse-grid correction. As Eq. (1) is elliptic in the h-direction, but advective in the x- and y-
directions, we use relaxation sweeps in the ðx; yÞ-plane, as described in Section 7, as the error smoothing procedure, and
coarsen only in the h-direction [6]. In Section 9, we will report results for standard V- and W-cycles [6]. For simplicity, we
assume here that nh is a power of 2, and that the coarsest grid has the four direction vectors ð�1;0Þ and ð0;�1Þ. We now
describe the various components of the coarse-grid correction process in detail.

8.1. Transfer of residuals from fine to coarse grids

In this subsection, we consider two angular grids. The points of the finer angular grid are denoted, as in Section 7, by
1 Thi
spectra
the spe
Hl ¼ lDH; �nH=2þ 1 6 l 6 nH=2;
and those on the coarser angular grid are
2lDH; �nH=4þ 1 6 l 6 nH=4:
s is a common effect in linear iteration methods. To understand how it arises, note that in effect, we are applying the power method to determine the
l radius of the iteration matrix. How fast the power method converges depends on how many eigenvalues there are with modulus close, but not equal, to
ctral radius. When the mesh is larger, there are more such eigenvalues.
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(Note that our assumptions, stated earlier, that nh is a power of 2 and that the coarsest grid has four direction vectors imply
that nH=4 is an integer.)

We denote by X�F ; @X
out
F , and @Xin

F the interior and the outflow and inflow boundaries of the finer grid; similarly,
X�C ; @X

out
C , and @Xin

C are the interior and the outflow and inflow boundaries of the coarser grid. Residuals are calculated in
all interior and outflow boundary points of the fine grid. To describe how the residuals are transferred to interior and outflow
boundary points of the coarse grid, the following notation is useful. For integers p and n with n P 2;n even,
p mod n ¼ pþ zn; z ¼ integer chosen so that � n=2þ 1 6 p mod n 6 n=2: ð38Þ
With this notation, the transfer of residuals to the coarse grid is described by
RC
j;k;l ¼

rF
j;k;ð2l�1Þ mod nH

þ 2rF
j;k;2l þ rF

j;k;ð2lþ1Þ mod nH

4
; ð39Þ
where rF
... denotes the residual on the fine grid, and RC

... denotes the right-hand side of the correction equation on the coarse
grid, as in Eq. (33).

To ensure that the residuals that appear in the expression on the right-hand side of Eq. (39) are well-defined, we must
convince ourselves that the points ðjDs; kDs;2lDHÞ and ðjDs; kDs; ðð2l� 1Þ mod nHÞDHÞ do not belong to the inflow boundary
@Xin

F . Indeed, our definition of the discrete outflow boundary in Section 4.1 implies immediately that for ðjDs; kDsÞ 2 @X and
�nH=4þ 1 6 l 6 nH=4,
ðjDs; kDs; l � 2DHÞ 2 @Xout
C ) ðjDs; kDs;2lDHÞ 2 @Xout

F and ðjDs; kDs; ðð2l� 1Þ mod nHÞDHÞ 2 @Xout
F : ð40Þ
Our definition of the discrete inflow and outflow boundaries is designed to make (40) valid and, thereby, allow transfer of
residuals from fine grids to coarse grids using the standard formula (39). We note that (40) would not be valid with the first,
seemingly more natural definition of inflow and outflow directions in Section 4.1. This is why we modified the definition in
Section 4.1.

For later reference, we note that (40) can also be written as follows:
jDs; kDs;
l
2
� 2DH

� �
2 @Xout

C ) ðjDs; kDs; lDHÞ 2 @Xout
F for � nH=2þ 1 6 l 6 nH=2; l even; ð41Þ
and
jDs; kDs;
l� 1

2
mod nH=2

� �
� 2DH

� �
2 @Xout

C ) ðjDs; kDs; lDHÞ 2 @Xout
F for � nH=2þ 1 6 l 6 nH=2; l odd: ð42Þ
8.2. Transfer of corrections from coarse to fine grids

Corrections are interpolated from coarse to fine grids by piecewise linear interpolation. To write down what this means
explicitly, we again consider the two angular grids of Section 8.1, and assume that an approximation
f F
j;k;l; 0 6 j; k 6 ns; �nH=2þ 1 6 l 6 nH=2
to the solution on the fine grid is given, and a correction
f C
j;k;l; 0 6 j; k 6 ns; �nH=4þ 1 6 l 6 nH=4
has been computed on the coarse grid. The new approximation on the fine grid is then
f F
j;k;l þ

f C
j;k;l=2 if l is even

f C
j;k;ðlþ1Þ=2 mod nH=2

þf C
j;k;ðl�1Þ=2 mod nH=2

2 if l is odd

8<
:

9=
;: ð43Þ
If ðjDs; kDs; lDHÞ is an inflow boundary point on the fine grid, then the expression in curly brackets in Eq. (43) ought to be
zero: inflow boundary values should not be altered by the coarse-grid correction. Indeed this is so, since
ðjDs; kDs; lDHÞ 2 @Xin
F ) jDs; kDs;

l
2
� 2DH

� �
2 @Xin

C for � nH=2þ 1 6 l 6 nH=2; l even; ð44Þ
and
ðjDs; kDs; lDHÞ 2 @Xin
F ) jDs; kDs;

l� 1
2

mod nH=2
� �

� 2DH
� �

2 @Xin
C for � nH=2þ 1 6 l 6 nH=2; l odd; ð45Þ
In fact, (44) is the contrapositive of (41), and (45) is the contrapositive of (42); thus (44) and (45), taken together, are equiv-
alent to (40).
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8.3. Solution of the problem on the coarsest grid

On the coarsest grid (nH ¼ 4), we have found that downstream Gauss–Seidel iteration is always a very fast solver. To re-
duce the residual by a factor of 10�10, we never need more than four iterations.

9. Numerical results

9.1. Multigrid convergence for screened Rutherford scattering

In this subsection, we present numerical results for the equation with the Flatland analog of screened Rutherford scatter-
ing: q ¼ 3 in Eq. (10). We find convergence to be fast for all grids if D is not too large (Section 9.1.3); convergence does dete-
riorate eventually as D gets large (see Section 9.1.4), but not nearly as quickly as in the angular domain decomposition
method [3]. For a given value of D, the mean free path �k appears to have little effect on the convergence speed (Section 9.1.5).

9.1.1. Choosing optimal multigrid parameters
Our first experiments are aimed at choosing the parameters of the multigrid method (V-or W-cycles, the number and

ordering of pre- and post-relaxation sweeps) in order to achieve the most efficient performance possible. In these experi-
ments, we fix D ¼ 0:1, �k ¼ 1=20;000, and consider only the second-order upstream discretization of Test Problem 2.

To compare the effectiveness of different multigrid schemes, one must take into account the amount of work required for
a multigrid cycle. For instance, a V-cycle with l pre-relaxation sweeps (relaxation sweeps before coarse-grid correction) and
m post-relaxation sweeps (relaxation sweeps following coarse-grid correction) on each level requires approximately the
equivalent of ðlþ mÞð1þ 1=2þ 1=4þ � � �Þ ¼ 2ðlþ mÞ relaxation sweeps on the finest level. We approximate the cost of the
fine-to-coarse and coarse-to-fine transfers as the equivalent of another two relaxation sweeps on the finest level, so that
the approximate total cost of a V-cycle is the equivalent of
w ¼ 2ðlþ mþ 1Þ
relaxation sweeps on the finest grid. A similar calculation for W-cycles yields
w ¼ log2ðnhÞðmþ lþ 1Þ:
We call ðqM;NÞ1=w (see Eq. (35) for the definition of qM;N) the effective convergence factor during iterations M through N.
Because a multigrid cycle costs the equivalent of approximately w relaxation sweeps on the finest grid, effective multigrid
convergence factors can be compared directly with the convergence factors in Table 3, for instance.

We called the ordering defined by Eq. (34) the ‘‘red-black” ordering of the grid points. The ‘‘black” points of a given grid
belong to the next coarser grid, whereas the ‘‘red” ones do not. We could equally well use the ‘‘black-red” ordering:
l ¼ �nH=2þ 2;�nH=2þ 4; . . . ;nH=2; �nH=2þ 1;�nH=2þ 3; . . . ; nH=2� 1:
Since the ‘‘black” points belong to the coarser grid, it is plausible that it should be most efficient to end the pre-relaxation in
the ‘‘red” points, and to begin the post-relaxation in those points. Numerical experiments confirm this heuristic reasoning.
We therefore always use the black-red ordering for pre-relaxation, and the red-black ordering for post-relaxation.

Table 5 shows effective convergence factors for V-cycles, using ðl; mÞ ¼ ð1;0Þ; ð0;1Þ; ð1;1Þ, and ð2;1Þ, respectively. The
ð0;1Þ-cycles are the most efficient, although they are only slightly more efficient than the other choices. Most notably, all
choices of ðl; mÞ lead to scalable performance, i.e., effective convergence factors that don’t degrade as ns and nh increase. Table
6 shows the effective convergence factors for W-cycles, using ðl; mÞ ¼ ð0;1Þ. Here, we see some degradation as nh increases.
This is because, although the values of q1;24 are comparable for V- and W-cycles, the dependence of w on log2ðnhÞ in the
W-cycle case leads to degradation in the effective convergence factors.

9.1.2. Asymptotic convergence
To illustrate asymptotic convergence speed, we reproduce a portion of Table 5 presenting ðq11;60Þ1=w. Thus we perform here

a large number (60) of multigrid cycles, and do not include the first 10 cycles in the average to avoid initialization-dependent
transient effects. If we did this with test problems 1 or 2, we would reach machine precision long before completing the 60
cycles and, thus, the results would be polluted by round-off errors. Therefore, we consider test problem 3 here, starting with
the initial guess specified in Eq. (37). The results are given in Table 7. They do not differ much from the corresponding results
of Table 5. One does see a bit of a deterioration of convergence factors as ns increases in Table 7; we have not been able to
explain that. Notice that such an effect is also seen, although quite slight, in Table 5.

9.1.3. Dependence of multigrid convergence on the discretization
Here, we again fix the values D ¼ 0:1 and �k ¼ 1=20;000. Effects of varying D and �k will be explored in Sections 9.1.4 and

9.1.5. Table 8 shows q1;24 for test problem 2, discretized with first-order upstream differencing, for various different values of
ns and nh.



Table 5
Effective convergence factors for V-cycles. Test problem 2, discretized with second-order upstream differencing.

nh ¼ 32 nh ¼ 64 nh ¼ 128 nh ¼ 256 nh ¼ 512

ðl; mÞ ¼ ð1;0Þ
w ¼ 4

ð�q1;24Þ1=w is shown

ns ¼ 32 0.699 0.729 0.714 0.707 0.715
ns ¼ 64 0.701 0.736 0.741 0.706 0.713

ns ¼ 128 0.704 0.737 0.752 0.727 0.711
ns ¼ 256 0.706 0.735 0.754 0.749 0.711
ns ¼ 512 0.709 0.732 0.757 0.756 0.734

ðl; mÞ ¼ ð0;1Þ
w ¼ 4

ð�q1;24Þ1=w is shown

ns ¼ 32 0.698 0.702 0.701 0.706 0.714
ns ¼ 64 0.701 0.707 0.705 0.706 0.712

ns ¼ 128 0.703 0.708 0.714 0.706 0.710
ns ¼ 256 0.706 0.708 0.715 0.708 0.711
ns ¼ 512 0.708 0.709 0.726 0.712 0.711

ðl; mÞ ¼ ð1;1Þ
w ¼ 6

ð�q1;12Þ1=w is shown

ns ¼ 32 0.716 0.760 0.748 0.745 0.747
ns ¼ 64 0.712 0.763 0.768 0.754 0.755

ns ¼ 128 0.709 0.761 0.777 0.759 0.757
ns ¼ 256 0.705 0.757 0.776 0.774 0.758
ns ¼ 512 0.702 0.754 0.773 0.779 0.761

ðl; mÞ ¼ ð2;1Þ
w ¼ 8

ð�q1;8Þ1=w is shown

ns ¼ 32 0.663 0.764 0.792 0.782 0.781
ns ¼ 64 0.659 0.765 0.809 0.792 0.790

ns ¼ 128 0.655 0.762 0.810 0.805 0.799
ns ¼ 256 0.652 0.759 0.807 0.815 0.804
ns ¼ 512 0.648 0.755 0.803 0.815 0.809

Table 6
Effective convergence factors for W-cycles. Test problem 2, discretized with second-order upstream differencing.

nh ¼ 32 nh ¼ 64 nh ¼ 128 nh ¼ 256 nh ¼ 512

ðl; mÞ ¼ ð0;1Þ
w ¼ 2log2ðnhÞ
ð�q1;24Þ1=w is shown

ns ¼ 32 0.866 0.888 0.904 0.917 0.928
ns ¼ 64 0.868 0.890 0.905 0.917 0.927

ns ¼ 128 0.869 0.891 0.908 0.917 0.927
ns ¼ 256 0.870 0.891 0.908 0.917 0.927
ns ¼ 512 0.871 0.892 0.908 0.918 0.927

Table 7
A portion of Table 5 reproduced using ðq11;60Þ1=w as the convergence measure, for test problem 3.

nh ¼ 32 nh ¼ 64 nh ¼ 128 nh ¼ 256 nh ¼ 512

ðl; mÞ ¼ ð0;1Þ
w ¼ 4

ð�q11;60Þ1=w is shown

ns ¼ 32 0.694 0.717 0.702 0.640 0.636
ns ¼ 64 0.694 0.719 0.725 0.683 0.632

ns ¼ 128 0.693 0.729 0.735 0.711 0.647
ns ¼ 256 0.692 0.750 0.767 0.728 0.683
ns ¼ 512 0.691 0.763 0.811 0.771 0.726

Table 8
A portion of Table 5 reproduced with first-order instead of second-order discretization.

nh ¼ 32 nh ¼ 64 nh ¼ 128 nh ¼ 256 nh ¼ 512

ðl; mÞ ¼ ð0;1Þ
w ¼ 4

ð�q1;24Þ1=w is shown

ns ¼ 32 0.695 0.696 0.700 0.707 0.714
ns ¼ 64 0.696 0.698 0.701 0.706 0.712

ns ¼ 128 0.700 0.700 0.702 0.704 0.710
ns ¼ 256 0.701 0.705 0.703 0.705 0.709
ns ¼ 512 0.706 0.706 0.706 0.705 0.708
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Multigrid convergence is slightly slower for second-order differencing than for first-order differencing, but in both cases
convergence is rapid for all mesh widths.

9.1.4. Dependence of multigrid convergence on the angular diffusion coefficient
As D becomes large, the convergence of the angular multigrid method deteriorates eventually. However, convergence is

still excellent for moderately large values of D for which the domain decomposition method described in [3] does not work
well. Table 9 illustrates this. The table shows ðq1;24Þ1=4 for ð0;1Þ-V-cycles for the second-order discretization of test problem 2
on a 128� 128� 128-grid, with �k ¼ 1=20;000 and various values of D.



Table 10
Average effective convergence factor per ð0;1Þ-V-cycle in first 24 iterations for test problem 2, discretized using second-order upstream differencing, on a
128� 128� 128-grid, as a function of �k.

�k 10�1 10�2 10�3 10�4 10�5 10�6 10�7 10�8 10�9

ð�q1;24Þ1=4 0.704 0.704 0.706 0.713 0.716 0.717 0.717 0.717 0.717

Table 9
Average effective convergence factor per ð0;1Þ-V-cycle in first 24 iterations for test problem 2, discretized using second-order upstream differencing, on a
128� 128� 128-grid, as a function of D.

D 0.05 0.1 0.2 0.5 1 2 10 100

ð�q1;24Þ1=4 0.716 0.714 0.706 0.705 0.713 0.728 0.837 0.947

Table 11
A portion of Table 5 reproduced with the three-point discretization of the Fokker–Planck operator in place of the discretized scattering operator.

nh ¼ 32 nh ¼ 64 nh ¼ 128 nh ¼ 256 nh ¼ 512

ðl; mÞ ¼ ð0;1Þ
w ¼ 4

ð�q1;24Þ1=w is shown

ns ¼ 32 0.699 0.699 0.702 0.709 0.718
ns ¼ 64 0.702 0.702 0.703 0.708 0.716

ns ¼ 128 0.704 0.704 0.705 0.708 0.714
ns ¼ 256 0.705 0.707 0.707 0.708 0.713
ns ¼ 512 0.708 0.709 0.724 0.709 0.713

Table 12
Results similar to those of Table 5 with Henyey-Greenstein instead of screened Rutherford scattering.

nh ¼ 32 nh ¼ 64 nh ¼ 128 nh ¼ 256 nh ¼ 512

ðl; mÞ ¼ ð0;1Þ
w ¼ 4

ð�q1;12Þ1=w is shown

ns ¼ 32 0.489 0.497 0.547 0.570 0.588
ns ¼ 64 0.493 0.496 0.543 0.567 0.586

ns ¼ 128 0.496 0.497 0.539 0.563 0.582
ns ¼ 256 0.500 0.500 0.535 0.559 0.578
ns ¼ 512 0.503 0.505 0.531 0.555 0.574
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The increase in the convergence factors seen for this discretization as D increases may not be surprising. As D!1, the
discrete system becomes, to leading order, a set of uncoupled diffusion equations in h with periodic boundary conditions.
Multigrid convergence is well-known to suffer for one-dimensional diffusion with periodic boundary conditions, unless
an additional projection step is added to handle the null-space. The coupling provided by the spatial advection terms does,
of course, remain crucial in the limit of the continuum equations as D!1; they cause the equation to change its nature to
spatial diffusion in this limit (see Section 2.4).

9.1.5. Dependence of multigrid convergence on the mean free path
Table 10 illustrates the behavior of the multigrid convergence factors in the Fokker–Planck limit as �k! 0, with D ¼ 0:1

fixed. As �k decreases (with the parameter � in Eq. (10) adjusted so that D ¼ 0:1 remains fixed), the convergence deteriorates
slightly, but multigrid convergence in the limit is only slightly worse than for �k ¼ 1=10;000 (or even �k ¼ 1=10).

We note that the discretization of the Fokker–Planck operator @2=@h2 obtained in the limit as �k! 0 is spectral. If, instead,
the standard second-order finite-difference quotient is used, multigrid convergence factors are almost precisely the same as
those shown in Table 10; see Table 11.

9.2. Multigrid convergence for the Fokker–Planck equation

Table 11 reproduces a portion of Table 5, but with the right-hand side of the equation replaced by the Fokker–Planck
operator, discretized using the three-point stencil. Convergence is nearly identical to Table 5.

9.3. Multigrid convergence for Henyey–Greenstein scattering

Table 12 presents results similar to some of the results of Table 5, but now the right-hand side of the equation is the Hen-
yey–Greenstein scattering operator. Because of the extraordinarily fast convergence of the multigrid cycles for this scattering
kernel, we only show the convergence factor averaged over the first 12 iterations, as this is often sufficient to achieve accu-
racy near the level of machine precision.
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These results should be compared with those of Table 4. For Henyey–Greenstein scattering, it is quite difficult for the
coarse-grid correction to improve efficiency compared to the very fast convergence of relaxation sweeps alone. For
nh ¼ 1024 and ns ¼ 32, continued degradation in the convergence factors of relaxation alone is seen (with q1;12 ¼ 0:793),
while stabilization is seen in the effective convergence factor for the multigrid V(0,1) cycle (with ðq1;12Þ1=w ¼ 0:582); how-
ever, it must be noted that such grid sizes are unlikely to be relevant given the spectral accuracy of the discretization in
nh. Also note that for Henyey–Greenstein scattering, the multigrid convergence has not yet reached an asymptotic conver-
gence range with convergence factors independent of grid size even for nh ¼ 512, although numerical experiments show a
stabilization for larger grid sizes.

10. Discussion

We have presented a successful two-dimensional extension of the idea of angular multigrid iteration for transport prob-
lems [17]. It remains to be investigated whether a method along similar lines can be effective for real, three-dimensional
transport problem; if there is a fundamental obstacle, it is not apparent to us.

The algorithm that we use is different from that of [18] in several ways, and which of the differences is responsible for the
difference in performance is not, at this point, entirely clear. We intend to investigate this question in the near future, but
offer some thoughts about the differences between our algorithm and that of [18] here.

First, we consider a simpler problem than that of [18]. For reasons yet to be understood, we do not encounter, in our prob-
lem, the ray effects that were identified as the principal obstacle to efficient performance in [18]. We view our discretization
as the analog of an SN-discretization in three dimensions, since it uses collocation in angle, so we would expect ray effects to
play a role; however, it seems that they do not.

When we generalize our approach to three dimensions in future work, the resulting algorithm will be quite different from
that of [18]. Our guiding principle is to first design an efficient algorithm for the Fokker–Planck equation, then create a mod-
ification of it that applies to the Boltzmann transport equation. This point of view suggests, in particular, smoothing proce-
dures different from that used in [18].

The definition of the discrete inflow and outflow boundaries is centrally important to the success of our method, as the
key implication (40) follows from it. When we began the work on this project, we were less careful about defining the dis-
crete inflow and outflow boundaries; an efficient multigrid scheme could still be constructed, but we had to treat the trans-
fers between grids at the boundaries with great care to avoid a deterioration in convergence factors with increasing ns. The
approach presented here is simpler, and also seems more likely to generalize to non-rectangular geometries.

Local mesh refinement in x and y could probably be introduced quite easily into our scheme. Local refinement in the h-
direction, especially in an ðx; yÞ-dependent manner, will be more difficult.

For the Henyey–Greenstein scattering kernel, multigrid acceleration does not appear useful, due to the very effective per-
formance of the proposed relaxation scheme itself in this case. Intuitively, we believe that the reason why relaxation works
so well for Henyey–Greenstein scattering is that there is less angular diffusion than for screened Rutherford scattering with
the same value of D; compare for instance Figs. 14 and 15 of [3].

We have assumed in this paper that all scattering is forward-peaked. A more realistic model, known as the Boltzmann–
Fokker–Planck equation [7,15], allows rare ‘‘catastrophic” collisions resulting in large-angle deflections. In our Flatland mod-
el problem, a reasonable first approximation would be to replace the probability density p by
pBFP ¼
c

2p
þ ð1� cÞp; ð46Þ
where c is small but positive. Eq. (46) reflects the assumption that large-angle scattering is isotropic. Preliminary numerical
results show that for values of c corresponding to two or three large-angle collisions per 10,000 small-angle collisions, the
performance of our multigrid algorithm deteriorates only very slightly. In future work, we will investigate Boltzmann–Fok-
ker–Planck models more extensively, in particular abandoning the simplifying assumption that large-angle scattering is
isotropic.

While the assumption of mono-energetic transport is a reasonable first approximation for electron beams, it is of course
not physical. As we expand our work to three dimensions, we will also include energy-dependence in future work. Typical
discretizations in energy are based on dividing the particles into discrete mono-energetic groups and considering the scat-
tering between groups [8,16]. As long as particles only lose energy in collisions, the discretized equations accounting for
these losses can be viewed as block lower-triangular when organized by energy and can be solved by a forward sweep or-
dered from the highest energy to the lowest. In the presence of both up- and down-scattering in energy, sweeps downward
in energy may still be used as a block Gauss- Seidel iteration.

It is interesting to compare the performance of our algorithm with that of the domain decomposition algorithm of [3]. At
first sight, the convergence factors shown in Tables 2 and 3 of [3] seem much better than those in the present paper. How-
ever, one must of course take into account the cost per iteration for a correct comparison. For the Fokker–Planck equation,
this cost is Oðn2

s nhÞ for both methods, and therefore the angular domain decomposition method of [3] is in fact much faster
than our angular multigrid method. However, for the transport equation, the computational cost per iteration is proportional
to the number of nonzero entries in the matrix representing the discretized problem, Oðn2

s n2
hÞ, for our method, whereas it is

Oðn2
s n3

h Þ for the method of [3]. The reason is that the sweeps in the ‘‘time-like” directions in [3] require the solution of
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systems of dense linear equations of size �nh � nh. For large nh, our method is therefore much more efficient than that of [3].
Neither our multigrid approach nor the domain decomposition approach of [3] have yet been generalized to three
dimensions. However, the advantage of the angular multigrid method over the angular domain decomposition method
for high-resolution calculations is expected to become more pronounced in three dimensions.
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